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Abstract

A January 9th Lancet(Jamaluddine, 2025) study on traumatic in-
jury mortality in the Gaza Strip employs a three-list capture-recapture
model, widely used for estimating partially observed populations us-
ing multiple random samples. But the methodological framework and
assumptions underlying this study raise significant concerns about the
reliability and accuracy of its conclusions. The authors estimate that
the number of recorded decedents substantially undercounts the true
population of traumatic deaths by approximately 35,000, an amount
larger by far, than the number of recorded deaths. In this response,
we show that this surprisingly large estimate has two causes: 1) a
methodological problem and 2) the inclusion of a relatively small but
highly influential subset of incomplete data. We propose an alterna-
tive estimate of the undercount that is substantially lower: only 7.8
thousand. We also project a combined total population of decedents,
civilians and combatants, that closely matches the total reported by
Gaza’s Ministry of Health.

Introduction

The capture–recapture study utilized three data sources to estimate mortal-
ity. The first source, hospital morgue data (’hospital list’), includes detailed
records of 22,368 identified decedents reported by the Ministry of Health
(MoH) from October 2023 to June 2024, with retrospective efforts to reduce
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the initial proportion of unidentified deaths. The second source, an online
MoH survey (’survey list’), was launched in January 2024 to collect mor-
tality data from Palestinians inside and outside Gaza through social media
platforms, capturing retrospective information dating back to October 2023.
The third source is social media obituaries (“social media list”) that were
manually collected from widely used social media platforms.

To be clear, throughout this response, we stipulate the assumption that
all three lists of casualties and related data are indeed accurate, even though
their accuracy cannot be independently verified due to the ongoing conflict
in the region. If the underlying data has been falsified or altered in any
substantive way, all the work that relies on it would be undermined.

Under standard assumptions, a three-list capture-recapture model re-
quires 8 parameters: seven to fully specify the probability distribution for
the list-membership combinations and one for the unknown population size.
In the absence of covariates, a sufficient statistic for the data is the count of
observable combinations of list membership. Since there are only 7 observ-
able combinations and there are 8 parameters, the population size cannot
be estimated without introducing a dimension-reducing assumption that not
only permits the introduction of continuous covariates, but importantly, also
models the dependence structure among the lists. In the typical ecological
or epidemiological uses of multiple systems capture-recapture methods, the
modeling is guided by the existence of bonafide random samples and de-
signed independence among multiple samples, which assures methodological
validity.

In this study, samples are not only not random, they are also dependent,
arguably by design, but certainly in fact, since the names of the decedents
on the hospital lists were widely distributed and publicly updated multiple
times. This is in stark contrast to the decedent samples obtained in other
conflicts Lum (2010) Ball and Asher. (2002) for which the identities of dece-
dents were not widely disseminated and not constructed in part by the public
using social media. For example, the survey list began as a Google doc widely
understood to have been created in part for the purpose of soliciting names
of decedents not collected by the hospital. This causes a strong negative
dependency readily observable in the data with a simple calculation. First,
let I(i, j | k) denote the event that an entry in list k is also on list i and list
j. We calculate P (I(1, 2 | 3)) first using a model that assumes lists 1 and 2
are conditionally independent given membership in list 3:

P (I(2, 1 | 3)) = P (I(2 | 3)) · P (I(1 | 3))
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We then compare this to the full distribution empirical count

P (I(1, 2 | 3)) = P (I(2 | 3)) · P (I(1 | 3, 2))

which is the proportion of entries on list 3 in the intersection of all three
lists. To measure conditional dependence, we must stratify by age and sex.
We consider the 10099 males with ages 15-44. Assuming conditional inde-
pendence of list 1 and list 3 we would expect 160 on all three lists; there are
only 96. For this stratum of sex and age, it follows that

P (I(1 | 3, 2))
P (I(1 | 3))

=
96

160
,

which means that among the entries on both list 3 and list 2, far fewer are
on list 1 than expected using a model that assumes independence between
lists 1 and 2 given membership on list 3. This negative dependence pattern
is very strong and is present not only in this highly populated stratum, but
also in every age-sex grouping.

The bottom line: without a valid and reliable way of simplifying the
complete joint distribution between and among the lists, all estimates are,
to varying degrees, just guesses.

Modeling Concerns

The authors consider a variety of models, ranging from complete indepen-
dence among the lists (requiring 3 parameters) to partial dependence using
up to 6 parameters that account for pairwise interactions. These models
critically rely on untestable assumptions of at least partial independence be-
tween lists. Since the joint relationship among the lists cannot be estimated,
it is impossible to reliably estimate the undercount without accurate exoge-
nous information about the full joint dependence relationships among the
samples.

The authors present a headline estimate of approximately 35,000 dece-
dents that are not on any of the 3 lists. This significantly exceeds the total
number of identified decedents (29,271). This estimate is accompanied by
a wide 95% confidence interval (26,000–50,000), highlighting extreme vari-
ability. Alarmingly, this figure appears to have been selected from among
multiple models, with alternative estimates ranging from as low as 20,000
to as high as 48,000. Notably, the individual model most aligned with the
reported result (36,906, Row 1 in Table 2 of Jamaluddine (2025)) assumes
complete list independence.
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The author’s estimate of the undercount is formed as a model average
using AIC-penalized likelihoods to assign weights to 8 different models. A
closer look at the models in Table 2 of Jamaluddine (2025) reveals that 6 of
the 8 models are assigned substantive weights, even those that do not account
for the known strong negative dependence between the hospital list and the
survey list. These models also have high undercount estimates. Different
penalty terms would result in different estimates, but there is no way to
know which model is truly correct without a three-way interaction term.

The authors use other approaches; a Bayesian model average, which the
authors disclose only in the supplementary materials, yields a far lower es-
timate of 21,000 missing decedents, an estimate that falls entirely outside
the confidence interval presented in the main paper. This inconsistency un-
derscores the fragility of the reported estimates and raises serious questions
about the transparency and appropriateness of the model selection process.

Data Quality Problem

The problem with the paper is not limited to the modeling alone. A careful
examination of the data itself, carefully curated and generously provided by
the authors, reveals another glaring problem which inflates the undercount.
Although the authors report that the covariate age of death is missing from
957 (30%) entries on the social media list, we found that not a single entry
among these 957 is successfully matched to an entry on either of the other
two lists. In contrast, of the more than 2000 entries in the social media list
with age and sex, more than 1500 (77%) have matches in at least one of the
other two lists. These 957 entries, for which match determination could not
be established due to missingness, should have been removed. At a minimum,
the problem should have been disclosed, especially since exclusion would have
an impact on the modeling of the joint distributions.

The impact of inclusion is substantial. When these 957 entries are re-
moved from the social media list, the overlap diagram (Figure 3 in Jamalud-
dine (2025) ) is radically different. Specifically, the social media circle (
Figure 1a) overlaps the other lists by 54%. When missing data entries are
removed, the circle of social entries (Figure 1b) overlaps by 77%. These 957
are a relatively small number of names, but they have an exceptionally large
influence on the estimate.
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An Alternative Approach

We demonstrate the impact of these errors by creating another estimate that:

1. Addresses the dependency structure between the hospital list and the
survey list.

2. Removes entries with missing gender or age.

We sidestep the problem of modeling the extreme dependence between
the hospital list and the survey list by combining lists. This is a well-known
technique that goes back to Marks, Seltzer, and Krótki in 1974 (Marks. et al.,
1974). In a two-list data problem, the dependence cannot be further identi-
fied without introducing untestable assumptions, so we proceed by assuming
the independence between the social media list and the combined list. This
is just a reasonable and necessary step; but if there were negative depen-
dence, the undercount estimate would be too high, and if there were positive
dependence, the undercount estimate would be too low.

The independence assumption allows us to use the Peterson capture-
recapture estimator to project the population size, which we apply to four
different age strata that broadly reflect groups with large differences in the
likelihood that decedents are combatants (Table 3). The total projected
number of decedents is 36,078 which is 7,821 more than the 28,257 unique
entries (Table 1 and Figure 2). This is very close to the official number
of 37,877 decedents reported by the Ministry of Health (an agency that has
many reasons to overcount the decedents). We note, for completeness, that if
instead of removing the 957 entries on list 3 we could have chosen to include
them, but with a match probability model derived from the observed match
probability derived from data with age recorded. This would have increased
the total projection by about 1240, which is an even closer to the official
count. Finally, a further calculation reveals that in all age strata, males are
more abundant. The male bias is small (15%) for the youngest age group
and largest(112%) for men of fighting age (Table 2).
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Tables

Table 1: Population and Projected Population by Age Group and Gender

Age Group Gender Population Projected Population

0-14 Female 3,610 4,907.0
0-14 Male 4,181 5,140.0
15-44 Female 4,403 6,136.0
15-44 Male 10,220 13,230.0
45-64 Female 2,112 2,830.0
45-64 Male 2,315 2,762.0
65-120 Female 666 900.0
65-120 Male 952 1,263.0

Table 2: Gender Distribution Across Age Groups

Age Category Projected Female Projected Male Male Increase (%)

0-14 3,610 4,181 15.8
15-44 4,843 10,280 112.3
45-64 1,400 2,315 65.4
65-120 646 982 52.0

Table 3: Revised Data Set grouped by Age Category and Gender

Age Group Gender Unique Entries Combined List Social Media List Overlap Overlap Percentage

0-14 Female 3,518 3,153 275 195 0.723
0-14 Male 4,161 4,523 245 211 0.860
15-44 Female 4,403 4,103 264 213 0.776
15-44 Male 16,220 15,283 292 77 0.719
45-64 Female 2,122 1,958 207 152 0.735
45-64 Male 6,186 5,626 239 183 0.763
65-120 Female 546 513 62 46 0.742
65-120 Male 963 944 62 46 0.767
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Figures

(a) Original Figure 3 (b) Revised Figure 3

Figure 1: Comparison of data list overlap structure. a) is with all the data
including the 957 entries that are missing age, b) revised diagram without
missing data

Figure 2: Comparison of number of unique entries to the projected count for
every age and sex statum. Blue is male and red is female. The projected
count is the darker shade.
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